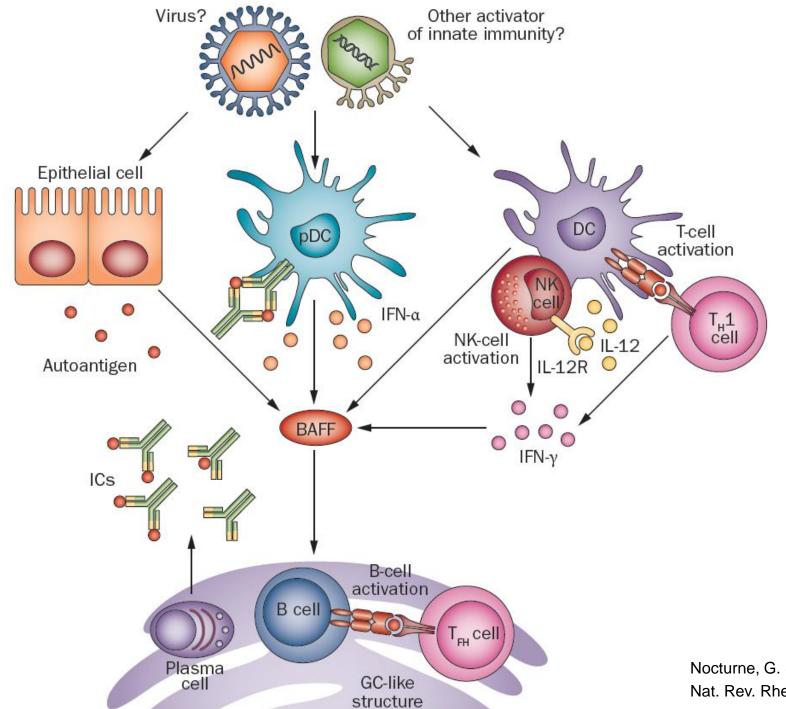


What are the latest news about Sjögren with a special highlight on the European project NeceSSity

Sjögren Europe webinar April 28, 2022

Xavier Mariette

Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Center for Immunology of Viral Infections and Autoimmune Diseases INSERM U1184, Université Paris-Saclay

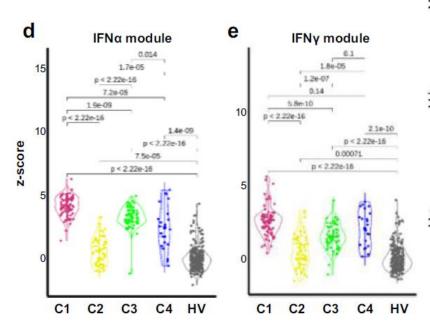


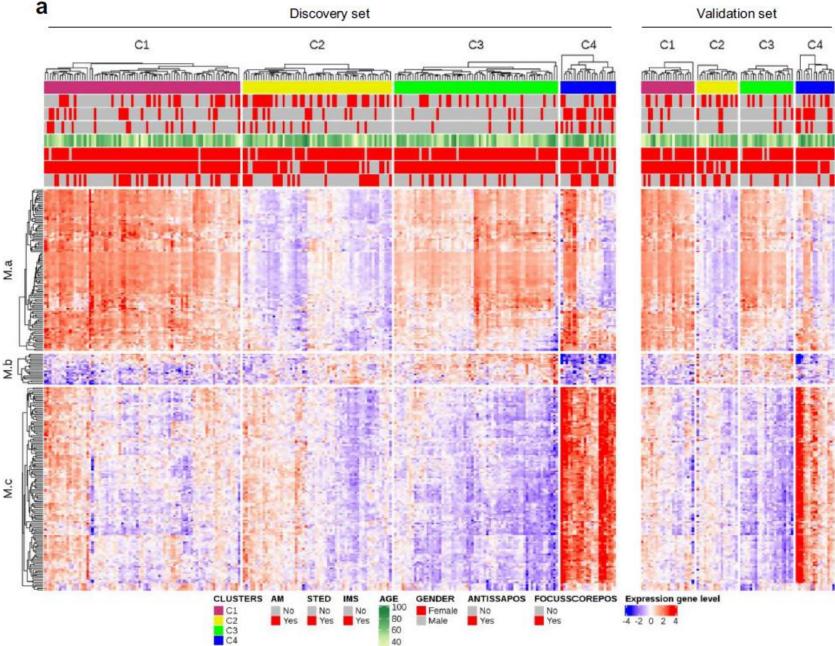
- The mechanism of the disease is probably different in different subgroups of patients
 - Necessity of Stratifying the patients
- New promising drugs
- The NECESSITY project

- The mechanism of the disease is probably different in different subgroups of patients
 - Necessity of Stratifying the patients
- New promising drugs
- The NECESSITY project

Pathophysiology

Nocturne, G. & Mariette, X. Nat. Rev. Rheumatol. 2013;9:544–556

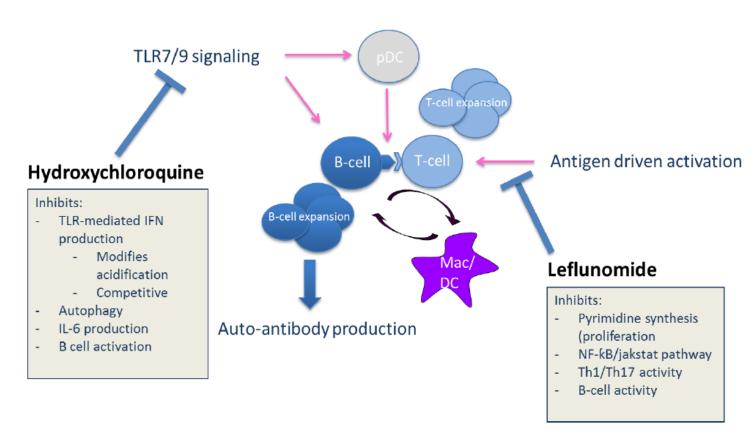



ARTICLE

Check for updates

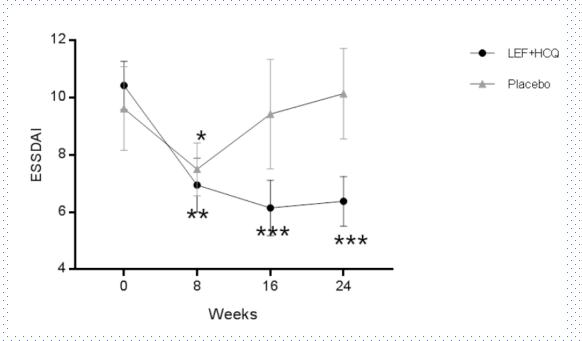
A new molecular classification to drive precision treatment strategies in primary Sjögren's syndrome

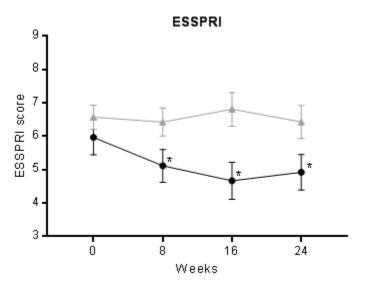
Perrine Soret^{1,29}, Christelle Le Dantec^{2,29}, Emiko Desvaux^{1,2}, Nathan Foulquier², Bastien Chassagnol on Sandra Hubert¹, Christophe Jamin ^{2,3}, Guillermo Barturen ⁴, Guillaume Desachy¹,
Valérie Devauchelle-Pensec^{2,3}, Cheïma Boudjeniba¹, Divi Comec on ^{2,3}, Alain Saraux^{2,3}, Sandrine Jousse-Joulin^{2,3}, Nuria Barbarroja⁵, Ignasi Rodríguez-Pintó on 6, Ellen De Langhe on ⁷, Lorenzo Beretta⁸, Carlo Chizzolini⁹, László Kovács¹⁰, Torsten Witte¹¹, PRECISESADS Clinical Consortium*, PRECISESADS Flow Cytometry Consortium*, Eléonore Bettacchioli³, Anne Buttgereit¹², Zuzanna Makowska¹², Ralf Lesche¹², Maria Orietta Borghi³, Javier Martin¹⁴, Sophie Courtade-Gaiani on 1, Laura Xuereb Mickaël Guedj¹, Philippe Moingeon 1, Marta E. Alarcón-Riquelme on 4, Laurence Laigle & Jacques-Olivier Pers on 2,3¹⁵³

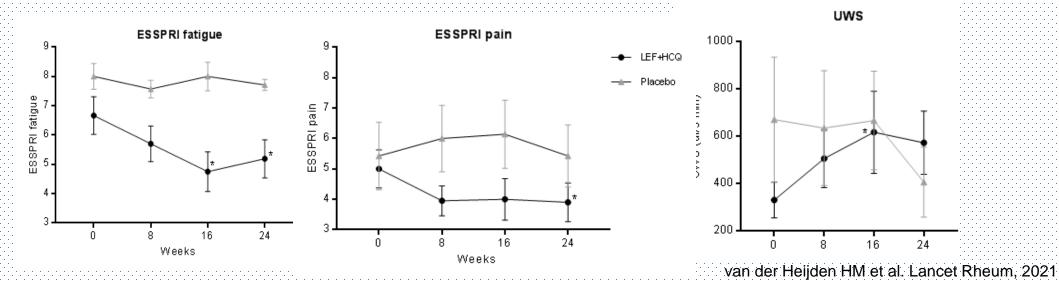


- The mechanism of the disease is probably different in different subgroups of patients
 - Necessity of Stratifying the patients
- New promising drugs
- The NECESSITY project

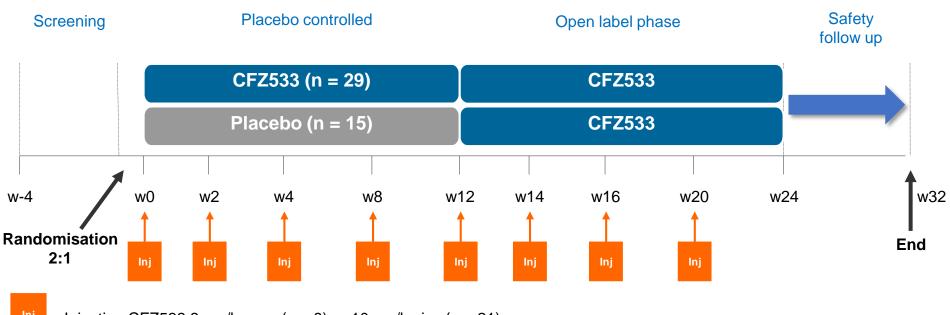
Combination of classical drugs targeting both B and T cells: HCQ + Leflunomide


Concept



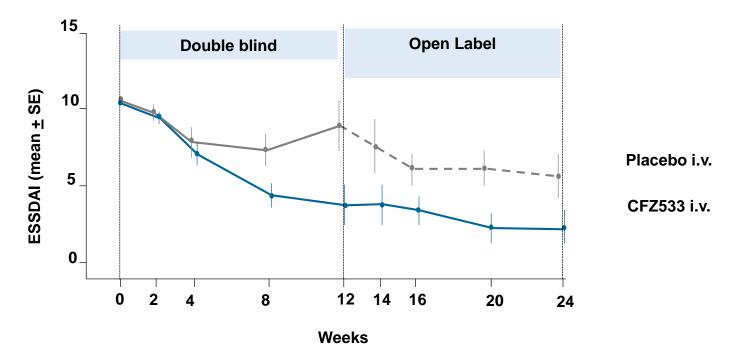


The main results of the LEF/HCQ RepurpSS-I study

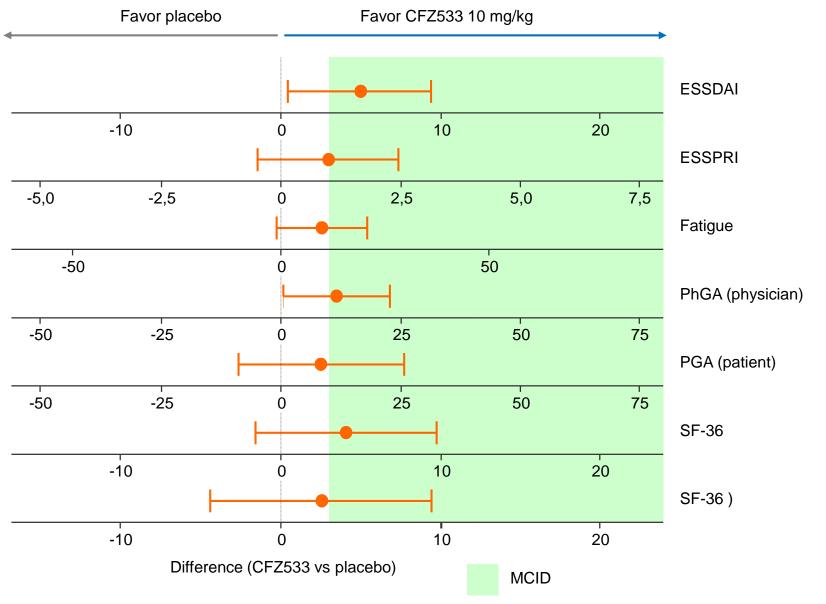


Iscalumab, anti-CD40 Ab, in primary Sjögren's syndrome

Phase IIa trial


- CFZ533 monoclonal Ab against CD40 (costimulation germinal centers)
- Inclusion Criteria : ESSDAI ≥ 6
 - age : 51 yrs ; women : 94 %
 - Mean ESSDAI = $10.7 (\pm 4.6)$; mean ESSPRI = $6.9 (\pm 1.6)$
- Ouctome : change in ESSDAI score at W 12

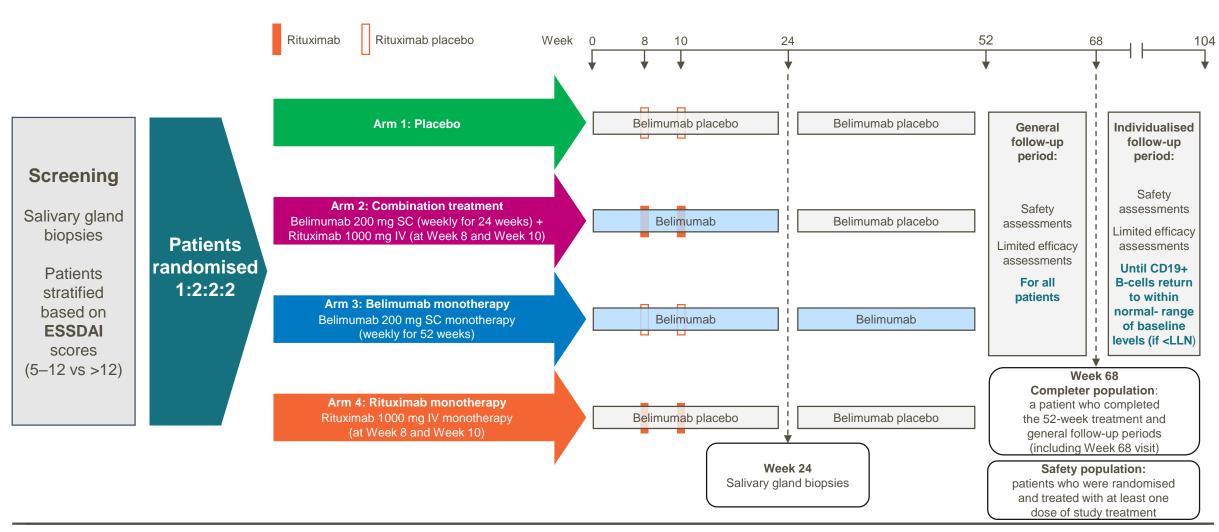
= Injection CFZ533 3 mg/kg s.c. (n = 8) or 10 mg/kg i.v. (n = 21)


Iscalumab, anti-CD40 Ab, in primary Sjögren's syndrome

- Significant improvement of ESSDAI in the 10 mg/kg i.v. groups
- Δ ESSDAI = 5,64 à S12 (IC₉₅ : 1,02-10,58)

- Insufficient effect in the 3 mg/kg s.c.
 - $-\Delta ESSDAI = 0.68 ; IC₉₅ : -4.71 ; -6.46)$
- Good safety profile: 1 SAE (atrial fibrillation)

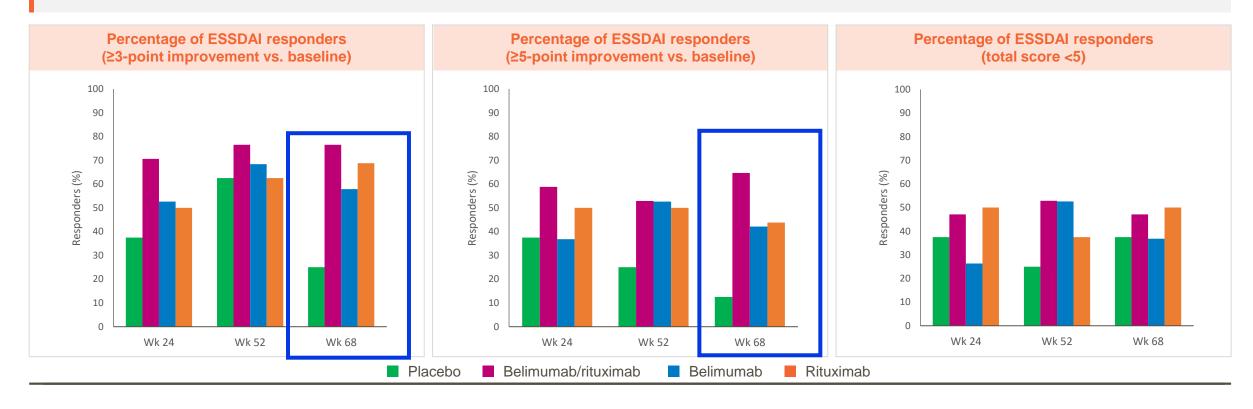
Iscalumab, anti-CD40 Ab, in primary Sjögren's syndrome


Safety and Efficacy of Subcutaneous Belimumab and Intravenous Rituximab Combination in Patients With Primary Sjögren's Syndrome: A Phase 2, Randomised, Placebo-Controlled 68-Week Study

OP0135

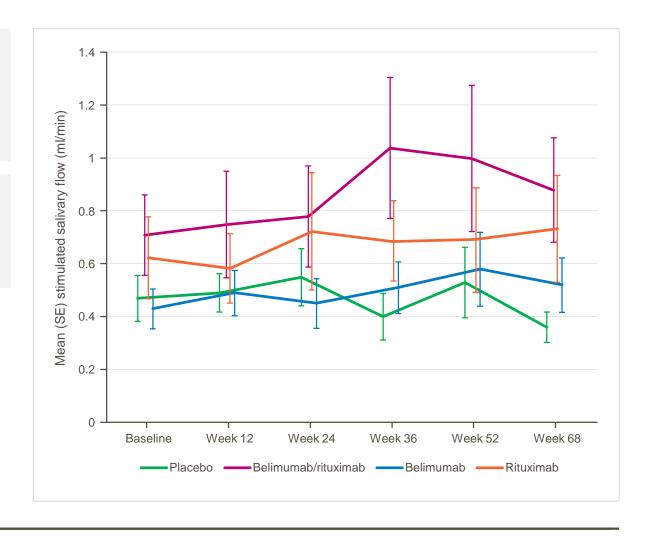
Xavier Mariette¹, Chiara Baldini², Francesca Barone³, Hendrika Bootsma⁴, Kenneth L Clark⁵, Salvatore DeVita⁶, Karoline Lerang⁷, Prafull Mistry⁸, Frederic Morin⁹, Raj Punwaney¹⁰, Raphaele Seror¹, Paul L A van Daele¹¹, André van Maurik¹², Nicolas Wisniacki¹³, David A Roth¹⁴

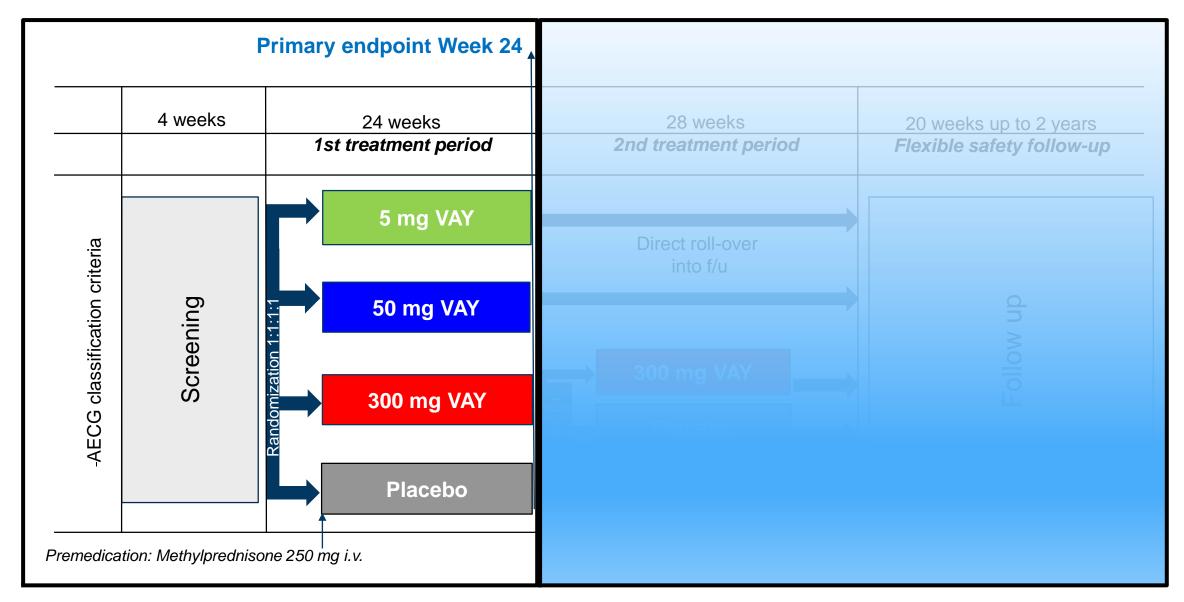
¹Department of Rheumatology, Université Paris-Saclay, Paris, France; ²Centro Farmacologia Clinica AOUP, Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; ³College of Medical and Dental Sciences, Department of Rheumatology, University of Birmingham, Birmingham, UK; ⁴University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, University of Groningen, Groningen, The Netherlands; ⁵GlaxoSmithKline, Clinical Science, Stevenage, Hertfordshire, UK; ⁶Azienda Ospedaliera Universitaria di Udine, Rheumatology Clinic, Department of Medical Area, Udine, Italy; ⁷Oslo University Hospital, Department of Rheumatology, Oslo, Norway; ⁸GlaxoSmithKline, R&D Biostatistics, Stevenage, Hertfordshire, UK; ⁹Centre de Recherche Musculo-Squelettique, Trois Rivieres, QC, Canada; ¹⁰GlaxoSmithKline, Pharmaceutical Research and Development, Philadelphia, PA, USA; ¹¹Erasmus Medical Center, Department of Internal Medicine, Stevenage, Hertfordshire, UK; ¹³GlaxoSmithKline, Discovery Medicine, Stevenage, Hertfordshire, UK; ¹⁴GlaxoSmithKline, Research and Development, Collegeville, PA, USA


Study Design

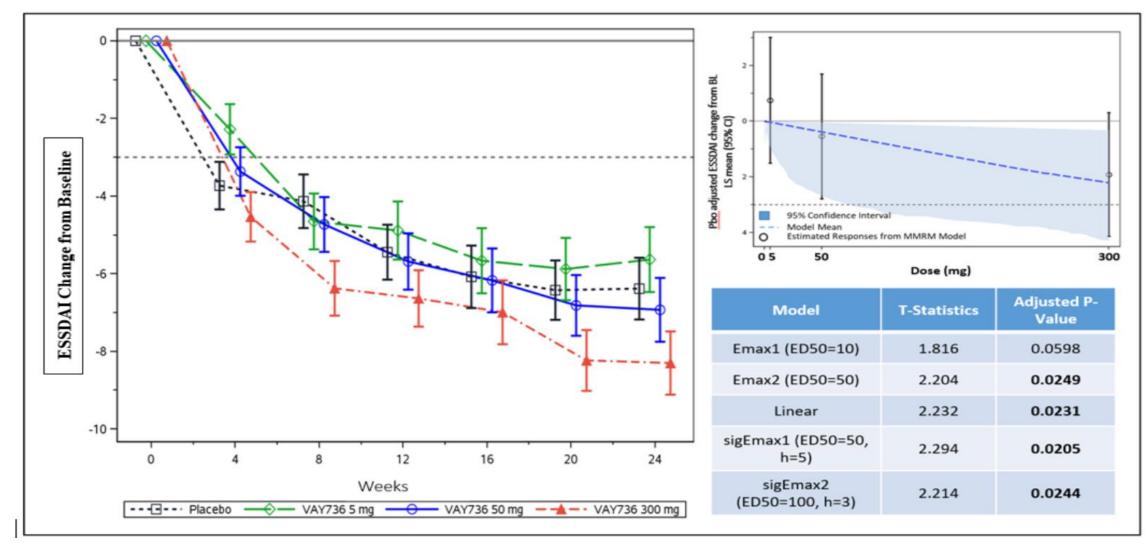
Efficacy: ESSDAI Responder Analysis (Completer Population)

At Week 52, there was a **numerically higher proportion** of responders in the **belimumab/rituximab** group than in the placebo group; this trend was sustained to Week 68

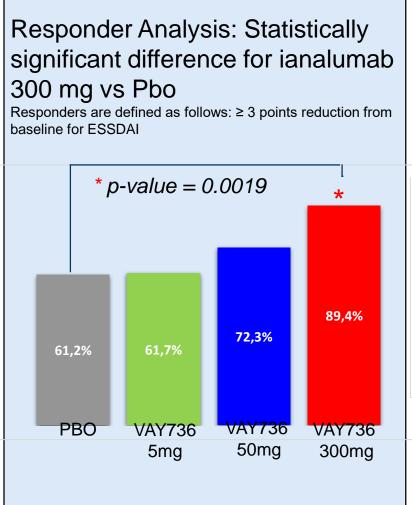

This trend was also observed for the belimumab and rituximab groups versus the placebo group

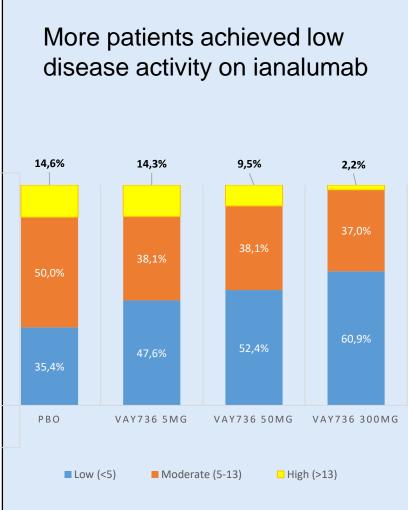

Efficacy: Stimulated Salivary Flow (Completer Population)

At Weeks 36, 52 and 68, the **stimulated salivary flow rate** showed a trend for numerically **greater increases** in the **belimumab/rituximab group** compared with the placebo group


Changes in stimulated salivary flow rate throughout the study were similar between the placebo and monotherapy groups

Ianalumab (anti-BAFF-R receptor) - Study design


ESSDAI Change from Baseline over Time up to Week 24 Reveals a Statistically Significant Dose Response Relationship*



^{*}The simulated dose response is based on model average method through bootstrapping technique. **ESSDAI**, EULAR Sjogren's Syndrome Disease Activity

ESSDAI – Efficacy at Week 24 (Secondary analysis)

The largest treatment effect was minus 1.92 points with ianalumab 300 mg over Pbo -3 -5 **VAY736 VAY736 VAY736** 5ma 50mg 300mg Least Square mean ± 95%CI

The recent RCT in Sjögren's

Study	Drug	Sponsor	N	Inclusion criteria	Primary endpoint	Estimated completion
NCT02291029	anti-CD40 Ab Phase 2	Novartis	44	ESSDAI ≥ 6	ESSDAI change W12	Completed and positive
NCT02334306	anti-ICOS-L mAb Phase 2	MedImmune /Amgen	32	ESSDAI ≥ 6. Anti-SSA/SSB and IgG> 16 g/L or RF +	ESSDAI change D99	Completed and negative
NCT01782235 ETAP	Tocilizumab Phase 2	Strasbourg University	110	ESSDAI ≥ 5 Anti-SSA/SSB	Improvement ESSDAI ≥3	Completed and negative
NCT02149420	anti-BAFF-R m Ab Phase 2B	Novartis	70	ESSDAI ≥ 6 Anti-SSA/SSB Sal. flow>0	ESSDAI change W12	Completed and positive
NCT	HCQ + LEF Phase 2	Utrecht University	29	ESSDAI ≥ 5	ESSDAI W24	Completed and positive
NCT02915159	Abatacept Phase 3	BMS	172	ESSDAI ≥ 5 Anti-SSA	ESSDAI D169	Completed and negative
EUCTR2014- 004523-51-GB	Pi3 kinase inhibitor Phase 2	UCB	58	ESSDAI ≥ 5 Anti-SSA/SSB Sal. flow>0	ESSDAI change W12	Completed and negative
NCT02631538	belimumab and rituximab co-administration Ph2	GlaxoSmith- Kline	70	ESSDAI ≥ 5 Anti-SSA/SSB Sal. flow>0	SAEs at W104	Completed and positive
NCT03100942	Filgotinib (Jak-i) Lanraplenib (Syk-i) Tirabrutinib (Btk-i)	Gilead Galapagos	152	ESSDAI ≥ 5 Anti-SSA/SSB	composite improvement of biologic and PRO	Completed and negative

Conclusion REVIEWS

REVIEWS

Check for updates

Current and future therapies for primary Sjögren syndrome

Raphaèle Seror^{1,2}, Gaetane Nocturne^{1,2} and Xavier Mariette¹ □

Classification based on the immunophenotype of the disease has improved

Interferon type 1 or type 2

T cells

B cells

Plasma cells

We have drugs dedicated to each of these pathways

The challenge:

To get reliable biomarkers of each of these phenotypes

To design stratified trials based on these biomarkers with specific drugs

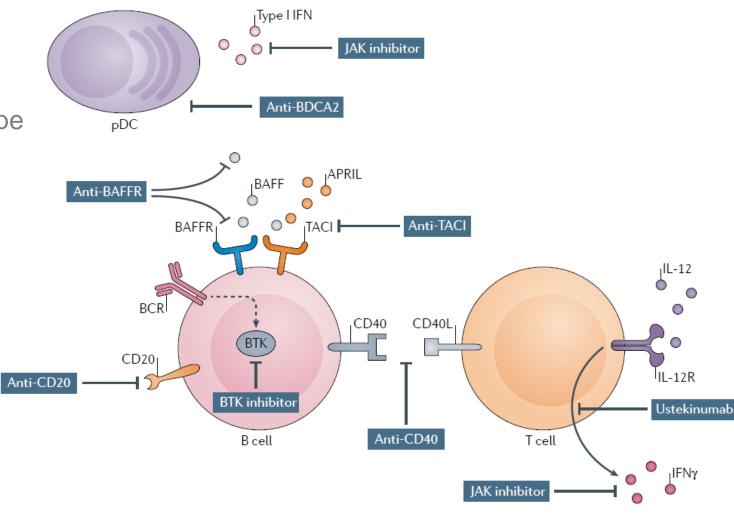


Fig. 1 | New therapeutic targets in primary Sjögren syndrome. Advances in understanding the pathogenic processes

- The mechanism of the disease is probably different in different subgroups of patients
 - Necessity of Stratifying the patients
- New promising drugs
- The NECESSITY project

Title: NEw Clinical Endpoints in primary Sjögren's Syndrome: an Interventional Trial based on stratifYing patients

Acronym: NECESSITY

Funded by IMI (European Commission) and EFPIA (Consortium of pharma industries)

Leader: Novartis: P Gergely Coordinator: INSERM: X Mariette

The vision

Sjögren's: burden for patients and associated direct and indirect costs for society are considerable High unmet need: still no disease-modifying therapies licensed for pSS patients

Why?

- Primary endpoints used in pSS studies have limitations
 - ESSDAI (measuring disease activity) lacks specificity (high placebo response rates)
 - Several important clinical features are not (well) captured in the ESSDAI score
 - Oral and ocular function, markers for autoimmunity and B cell hyperactivity
 - ESSDAI lacks meaningfulness to patients
 - Symptoms are assessed in ESSPRI and not in ESSDAI
 - Improvement in ESSDAI does not translate to symptom improvement measured by ESSPRI
 - ⇒ Need for a validated composite endpoint to assess all facets of pSS
- Targeted biological therapies may work on a subset rather than the entire population
 - Clinical heterogeneity is high in pSS, design of studies is difficult
 - ⇒ Need for biomarkers for stratification of patients
 - No validated surrogate clinical endpoint available for clinical studies
 - ⇒ Need for biomarkers predictive of response to treatment

The Consortium

20 ACADEMIC PARTNERS

UMC Utrecht

Fundación Progreso y Salud CONSEJERÍA DE SALUD

HELLENIC REPUBLIC

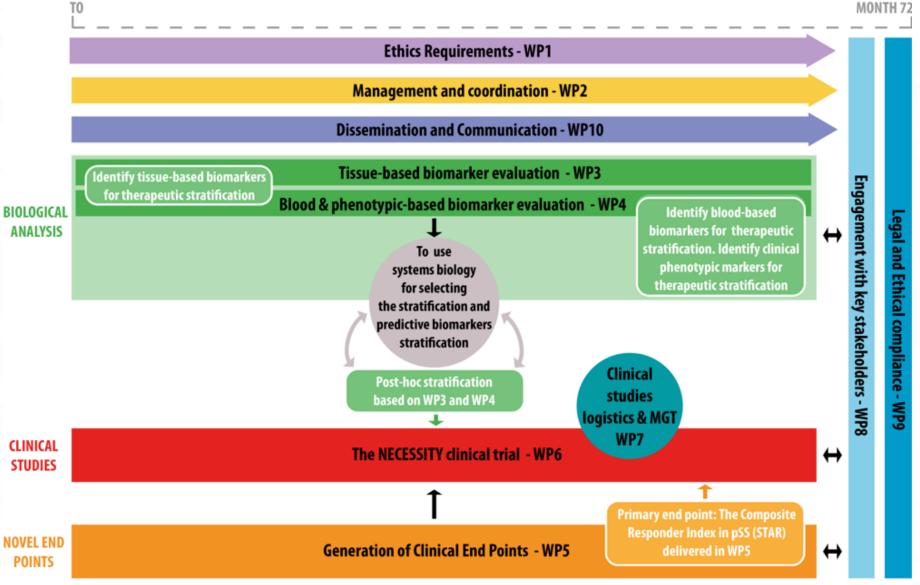
National and Kapodistrian University of Athens

- EST. 1837 -

4 INDUSTRY PARTNERS

Objectives

- Objective 2: **To identify and evaluate discriminative biomarkers for stratification** of pSS patients predictive of drug response (and thus available for inclusion in clinical trials),
- Objective 1: **To develop and assess sensitive clinical endpoints for use in future clinical trials** to evaluate response to drug treatments in patients with primary Sjögren's syndrome (pSS) with high disease burden and/or systemic involvement,
- Objective 3: **To set-up and perform** an original multi-arm multi-stage (MAMS) **clinical trial to validate the newly defined pSS endpoints and the identified biomarkers**, by maximizing the chance of finding a difference between the placebo arm and the treated arm.



The project

72 months
Jan 2019 – Dec 2024
10 Work packages
15.4M€
8.2M€ EU
7.2M€ EFPIA

Progress towards objective 1: novel biomarkers

The NECESSITY data warehouse on tranSMART was set up (D4.1). A preliminary list of tissue biomarkers was identified (D3.1). A preliminary list of blood biomarkers was identified (D4.3).

- Successful sharing of samples and data
 - Datasets: 9 academic and 1 industry studies (1 more pending)
 - Samples: 6 academic and 2 industry studies
- 3 publications, 1 manuscript in preparation

Issue/concern:

Delays due to COVID-19 pandemic (more on this in WP2)

Progress towards objective 2: novel endpoint STAR

The candidate STAR is ready (D5.1).

- Data sharing
 - 9 datasets: 7 academic and 3 industry studies
- Scientific contribution
 - 53 academic and 11 industry partners
 - Regulatory and payers' through WP8 activities
- Patients contribution
 - 20 patients
- Agreement from the European Medicines Agency for a Letter of support
- Manuscript has been published on April 7 in The Annals of Rheumatic Diseases (top 1 Rheumatology journal)
- On-going discussion with OMERACT for a possible endorsement of STAR

Objective 1 is met.

ADDRESSING THE CHALLENGES IN DRUG DEVELOPMENT

Primary endpoint

ESSDAI and ESSPRI: current measures selected as primary endpoint :

- Consensually developed and validated
- MCID available

Limitations of ESSDAL

- Promising recent trials, however many trials failed due to lack of sensitivity
- Does not measure symptomatic improvement
- Only relevant for patients with moderate to high systemic activity disease

Limitations of ESSPRI:

 No clear effect detected to date on ESSPRI in most of current clinical trials

Need for a unique score to measure both systemic and symptoms and include important but not well captured features (i.e. glandular function)

Patient stratification

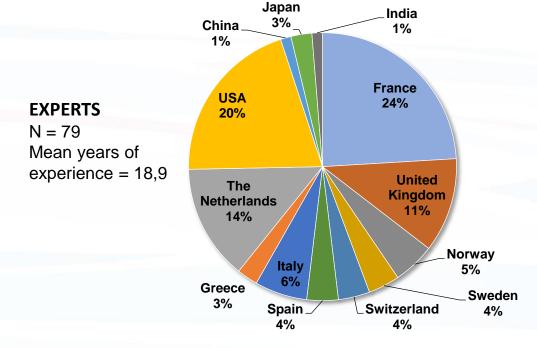
- Heterogeneous patient population
- Recent work showed 4 subgroups of patients based on symptoms
- Could respond differently to treatment

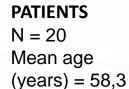
Need for stratification biomarkers to optimize design of clinical trials

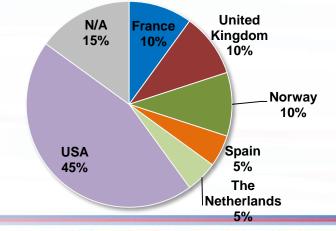
Evaluation of all features of pSS

- Symptoms are very variable from day to day
- No objective measure of fatigue, one of the three mots important symptoms of pSS
- Lack of validated procedures for evaluating improvement of glandular function

Need for more assessment procedures validated in pSS




NEW CLINICAL OUTCOME: SJÖGREN'S TOOL FOR ASSESSING RESPONSE TO TREATMENT (STAR)


Methodology

- Data, patient, and expert driven
 - Analysis on dataset from 9 clinical trials
 - Consensual building through iterative rounds of **Delphi process**

Trial	Arms	N patients
TEARS	RTX/Placebo	120 (1:1)
TRACTISS	RTX/Placebo	133 (1:1)
ETAP	Toci/placebo	110 (1:1)
JOQUER	HCQ/Placebo	120 (1:1)
ASAP-III	ABA/Placebo	88 (1:1)
Baminercept	Baminercept/Placebo	52 (2:1)
Anti-CD40 PoC Novartis	Anti-CD40/PBO Cohort 1 and 2	69 (2:1)
Anti-BAFFR PoC Novartis	Anti-BAFFR/PBO Cohort 1 and 2	25 (1:1)
RepurpSS-I	HCQ+LEF/PBO	29 (2:1)

NEW CLINICAL OUTCOME: SJÖGREN'S TOOL FOR ASSESSING RESPONSE TO TREATMENT (STAR)

Development of preliminary STAR

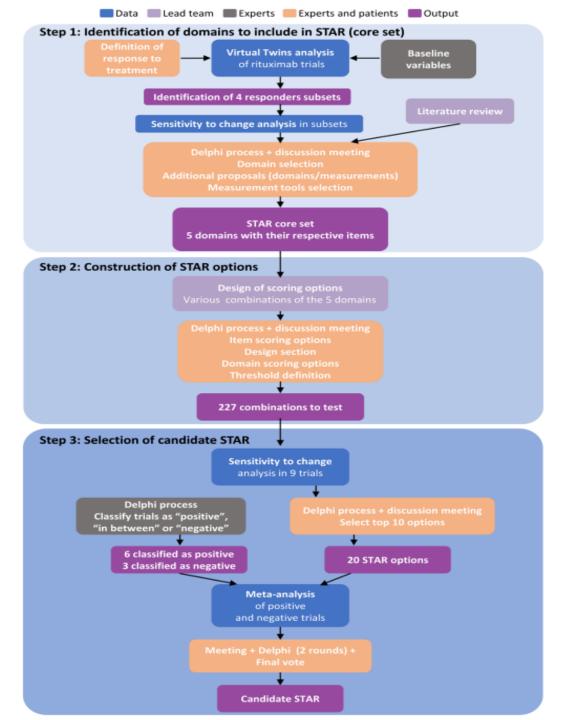
Step 1: Identification of domains to include in STAR (core set)

Step 2: Construction of STAR options from different combinations of the core set

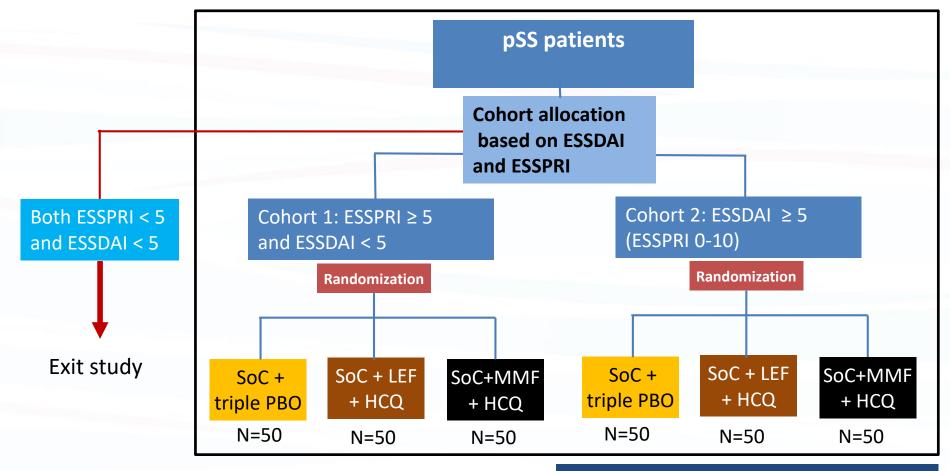
Step 3: Evaluation of sensitivity/specificity to change of STAR options and selection of the preliminary STAR

Validation and selection of final STAR

Step 4: Validation in the NECESSITY clinical trial and selection of the final STAR


EPIDEMIOLOGICAL SCIENCE

Development and preliminary validation of the Sjögren's Tool for Assessing Response (STAR): a consensual composite score for assessing treatment effect in primary Sjögren's syndrome


Seror R et al. Ann Rheum Dis, 7 April 2022

Raphaele Seror , ^{1,2} Gabriel Baron, ^{3,4} Marine Camus, ^{1,2} Divi Cornec , ^{5,6} Elodie Perrodeau, ^{3,4} Simon J Bowman, ^{7,8,9} Michele Bombardieri, ¹⁰ Hendrika Bootsma, ¹¹ Jacques-Eric Gottenberg , ^{12,13} Benjamin Fisher , ^{14,15} Wolfgang Hueber, ¹⁶ Joel A van Roon, ¹⁷ Valérie Devauchelle-Pensec, ^{5,6} Peter Gergely, ¹⁸ Xavier Mariette , ^{1,2} Raphael Porcher, ^{3,4} on behalf of the NECESSITY WP5 - STAR development working group

γ.					
	Table 3 Candidate STAR				
	Domain	Point	Definition of response		
	Systemic activity	3	Decrease of ≥3 in clinESSDAI.		
	Patient-reported outcome	3	Decrease of ≥ 1 point or $\geq 15\%$ in ESSPRI.		
	Lachrymal gland function (assessed by Schirmer's test or ocular staining score)	1	Schirmer's test: If abnormal score at baseline: increase ≥5 mm from baseline. If normal score at baseline: no change to abnormal. Or Ocular staining score: If abnormal score at baseline: decrease of ≥2 points from baseline. If normal score at baseline: no change to abnormal.		
	Salivary gland function (assessed by unstimulated whole salivary flow or ultrasound)	1	Unstimulated whole salivary flow: If score is >0 at baseline: increase of ≥25% from baseline. If score is 0 at baseline: any increase from baseline. Or Ultrasound: Decrease of ≥25% in total Hocevar score from baseline.		
	Biological (assessed by serum IgG or RF level)	1	Serum IgG level: decrease of ≥10%. Or RF level: decrease of ≥25%.		
	Candidate STAR responder		≥5 points		

Objective 3: validation of STAR in The NECESSITY clinical trial

SoC: Standard of Care (e.g. low dose steroid, methotrexate)

PBO: placebo

HCQ: hydroxychloroquine

LEF: leflunomide MMF: mycophenolate

Treatment: 6 months

Follow-up: plus 3months (with any SOC)

Key endpoints at 6 months:

- Delta ESSPRI for Cohort 1
- Delta ESSDAI for Cohort 2
- Performance of the new endpoint(s)

NEW NON INVASIVE ASSESSMENT PROCEDURES IN THE CLINICAL TRIAL

PEPSS

- Web application: secure website accessible from smartphone, computer
- Self-reporting of symptoms of dryness, pain and fatigue
- Daily reporting
- In the context of the patient's routine life

Biosensors

- Watch and patch
- Physical activity/rest and physiological date (ECG etc)
- Objective evaluation of fatigue

Ultrasound scoring

- Originally developed for diagnostic purposes
- Determine if could detect changes after therapy and avoid the need for biopsies

Ophthalmologic procedures

- Meibography and non-invasive tear break up time
- Shown value for objective evaluation of ocular dryness
- Not yet validated in pSS

Merci xavier.mariette@aphp.fr

Questions?